Outline

THIS TALK

Precision B Lifetimes

- motivation
- $\blacktriangleright \Lambda_b$
- $\triangleright B_s$
- \triangleright B_s lifetime difference

B Mixing

- current status
- ingredients
- results
- Summary

OTHER TALKS

- CDF and DØ detectors
 CDF and DØ Hot Topics
- Detailed B_s mixing at DØ D. Buchholz

DØ Hot Topics

■ Detailed $B \rightarrow hh$

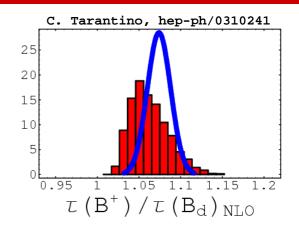
D. Tonelli
CDF Hot Topics

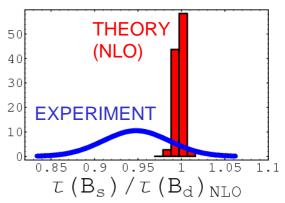
 \blacksquare B_c lifetime

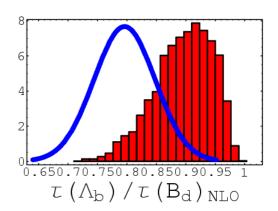
I. KravchenkoB Spectroscopy

 $\blacksquare B_s \to D_s D_s$

R. Van Kooten


Bs Decays and B leptonic decays

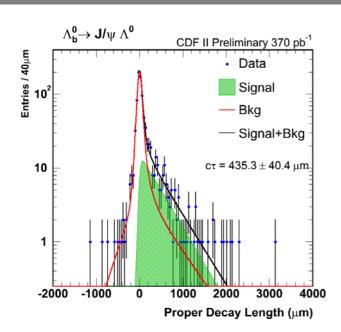

Precision B Lifetimes

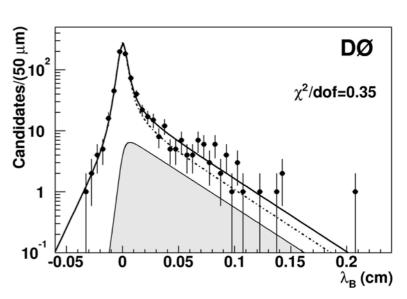


Precision B Lifetimes Motivation

- b-hadron decays dominated by b-quark
- Light quarks are included with $1/m_b$ perturbative expansions (HQE)
 - expect small differences between lifetimes of different species
 - lifetime ratios reduce theory uncertainties

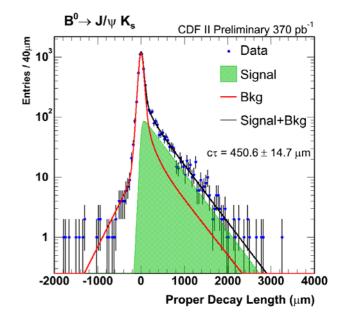
Precision B Lifetimes Λ_b Lifetime


- CDF and DØ have measured $\Lambda_b \to J/\psi \Lambda$ lifetime
- Better proper time resolution than $\Lambda_b \to \Lambda_c |_{\mathcal{V}}$ (world average dominated)
- **Earlier** $\tau(\Lambda_b)/\tau(B^0)$ predictions were 2σ above experiment
 - new calculations including higher order effects predict lower ratio


CDF 370 pb-1

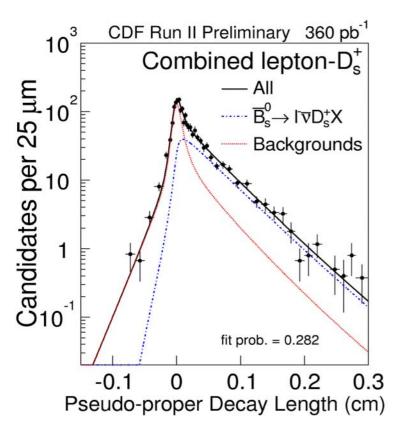
DØ 250 pb⁻¹

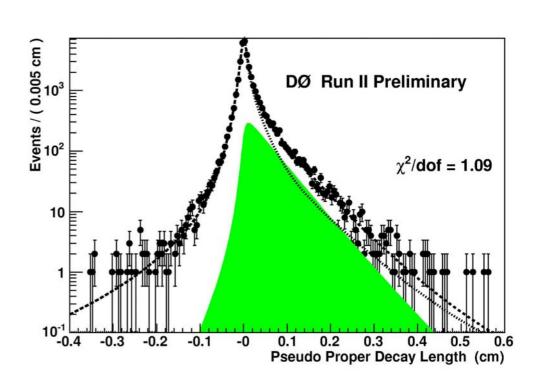
$$\tau_{\Lambda_{b}} = 1.45^{+0.14}_{-0.13} (stat) \pm 0.02 (syst) \text{ps} \quad \tau_{\Lambda_{b}} = 1.22^{+0.22}_{-0.18} (stat) \pm 0.04 (syst) \text{ps}$$


PRL 94 102001 (2005)

Precision B Lifetimes Λ_b Lifetime at CDF

- Analysis based upon 370 pb⁻¹
- Technique
 - unbinned maximum likelihood fit to proper decay-length and mass
- - $\blacktriangleright J/\psi \rightarrow \mu\mu$
 - $\blacktriangleright \Lambda^0 \rightarrow p\pi^-$
- Use B^0 reference mode
 - larger yield and similar decay topology
- \blacksquare $B^0 \rightarrow Jpsi~K_s^{~0}$ 1225 \pm 53 candidates
 - $\blacktriangleright J/\psi \rightarrow \mu\mu$
 - $ightharpoonup K_{\rm s}^{0}
 ightharpoonup \pi^{+}\pi^{-}$


CDF 370 pb⁻¹
$$\tau_{B^0} = 1.503^{+0.050}_{-0.048} (stat) \pm 0.016 (syst) ps$$

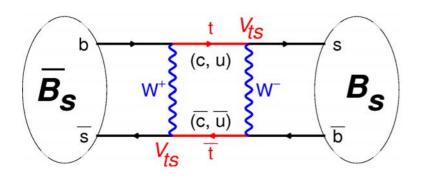

HFAG $\tau_{R^0} = 1.527 \pm 0.008 \, \mathrm{ps}$

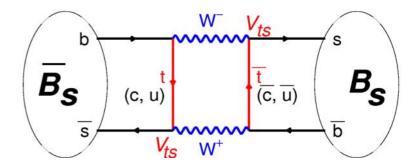
April 9, 2006

Precision B Lifetimes B_s Lifetime

DØ and CDF measure B_s^0 lifetime in $B_s^0 \to D_s^- l^+ \nu X$

CDF 360 pb-1


DØ 400 pb⁻¹


$$au_{B_s^0} = 1.381 \pm 0.055 \left(stat\right)_{-0.046}^{+0.052} \left(syst\right) ps$$

 $\tau_{B_{-}^{0}} = 1.381 \pm 0.055 \, (stat)_{-0.046}^{+0.052} \, (syst) \, ps \, \tau_{B_{-}^{0}} = 1.420 \pm 0.043 \, (stat) \pm 0.057 \, (syst) \, ps$

best in the world

Precision B Lifetimes Neutral Meson Mixing

 \blacksquare Quark mixing \Rightarrow non-diagonal Hamiltonian for $\langle \overline{B} \mid H \mid B \rangle$

$$H = \begin{pmatrix} M & M_{12} \\ M_{12}^* & M \end{pmatrix} - \frac{i}{2} \begin{pmatrix} \Gamma & \Gamma_{12} \\ \Gamma_{12}^* & \Gamma \end{pmatrix}$$

- Diagonalizing the Hamiltonian results in
 - lacktriangle two eigenstates $\left|B_s^{Heavy}\right>$ and $\left|B_s^{Light}\right>$
 - ▶ two masses m_H and m_L , with $\Delta m \equiv m_H m_L$
 - ▶ two decay widths Γ_H and Γ_L , with $\Delta\Gamma \equiv \Gamma_L \Gamma_H$

R. Van Kooten

 $B_{\rm s}$ decays and B leptonic decays

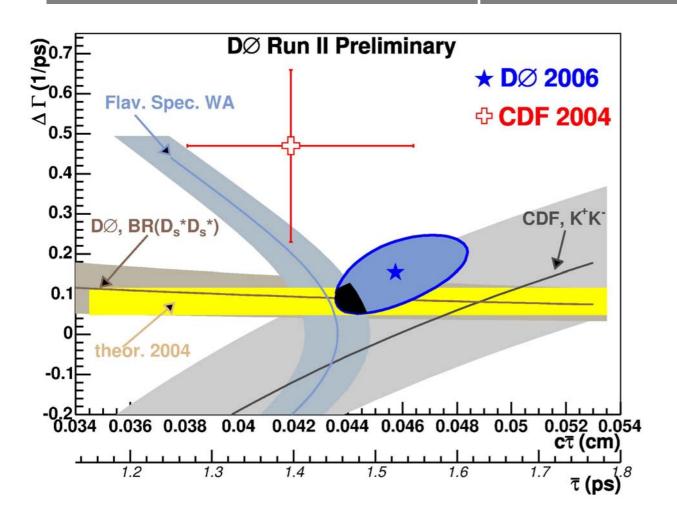
April 9, 2006

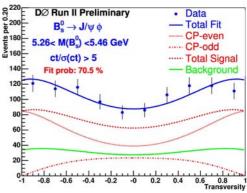
Precision B Lifetimes B_s Lifetime Difference

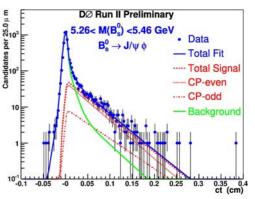
 $B_s \rightarrow J/\psi \phi$

Pseudoscalar → Vector - Vector

- Decay amplitude decomposed into 3 linear polarization states
 - ► $A_0 = S + D$ wave $\Rightarrow P$ even
 - ► $A_{||}$ = S + D wave \Rightarrow P even
 - $A_1 = P \text{ wave } \Rightarrow P \text{ odd}$
- If CP violation neglected
 - ► $B_{s, \text{Light}} \approx \text{CP even}$
 - ► $B_{s,\text{Heavy}} \approx \text{CP odd}$
 - angular distributions are different
- Angular analysis separates CP eigenstates ⇒ measure two lifetimes


April 9, 2006 J. Piedra


Precision B Lifetimes B_s Lifetime Difference


CDF 260 pb-1 DØ 800 pb-1

$$\Delta \Gamma = 0.47^{+0.19}_{-0.24} \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}^{-1}$$

 $\Delta \Gamma = 0.47^{+0.19}_{-0.24} \text{ (stat)} \pm 0.01 \text{ (syst)} \text{ ps}^{-1}$ $\Delta \Gamma = 0.15 \pm 0.10 \text{ (stat)} ^{+0.03}_{-0.04} \text{ (syst)} \text{ ps}^{-1}$

Precision B Lifetimes $B_{\scriptscriptstyle S} \to K^+K^-$ and $B_{\scriptscriptstyle C}$

■ First $\tau_{B_c \to K^+K^-} (\approx \tau_L)$ measurement (~95% CP even)

$$\tau_L = 1.53 \pm 0.18 (stat) \pm 0.02 (syst) \text{ ps}$$

D. Tonelli
CDF Hot Topics

- Expected $\tau(B_u^+) \sim 3 \times \tau(B_c^+)$
- Lifetime extracted from $B_c^+ \rightarrow J/\psi e^+ \nu_e$ decay

$$\tau_{B_c^+} = 0.463_{-0.065}^{+0.073} (stat) \pm 0.036 (syst) \text{ps}$$

DØ 210 pb⁻¹

best in the world

I. KravchenkoB Spectroscopy

$$\tau_{B_c^+} = 0.448^{+0.123}_{-0.096} (stat) \pm 0.121 (syst) \text{ ps}$$

April 9, 2006

Precision B Lifetimes HFAG

- \blacksquare B⁺ and B⁰ at LEP/SLC, B factories and Tevatron (CDF/DØ)
 - dominated by Belle and BaBar
- B_s dominated by Tevatron, LEP
- \blacksquare B_c at Tevatron
- \blacksquare Λ_b dominated by LEP, Tevatron

b-hadron species	measured lifetime [ps]	$\tau/\tau(B^0)$ lifetime ratio	predicted range
B^+	1.643 ± 0.010	1.076 ± 0.008	1.04 - 1.08
$B_{_S}$ ($ ightarrow$ flavor specific)	1.454 ± 0.040	0.914 ± 0.030	0.99 - 1.01
A_b	1.288 ± 0.065	0.844 ± 0.043	0.86 – 0.95
B^0	1.527 ± 0.008	hep-ex/0603003	
B_c	0.469 ± 0.065	March 2006	

B Mixing

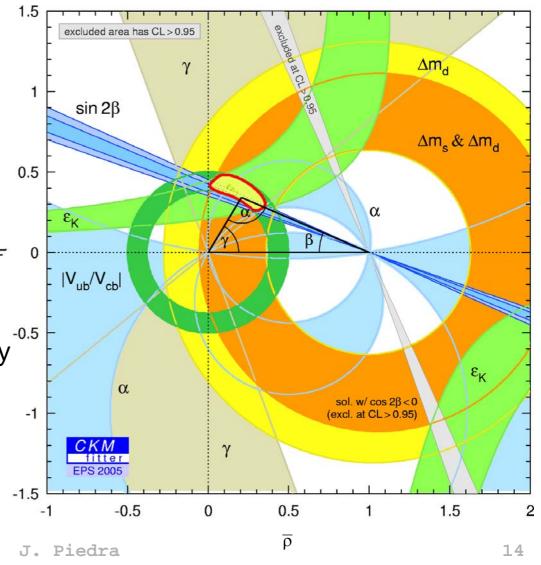
B Mixing Theoretical Prediction

SM prediction for the ratio of B_s and B^0 mixing frequencies

$$\frac{\Delta m_s}{\Delta m_d} = \frac{m_{B_s}}{m_{B_d}} \xi^2 \frac{\left| V_{ts} \right|^2}{\left| V_{td} \right|^2}$$
$$\xi^2 = 1.21 \pm 0.02^{+0.035}_{-0.014}$$

$$\xi^2 = 1.21 \pm 0.02^{+0.033}_{-0.014}$$

 Δm_d precisely measured


$$\Delta m_d = 0.508 \pm 0.004 \text{ ps}^{-1}$$

 Δm_s not yet measured precisely

CKM fit

$$\Delta m_s = 18.3^{+6.5}_{-1.5} \text{ ps}^{-1}$$

Potential NP discovery

B Mixing Significance

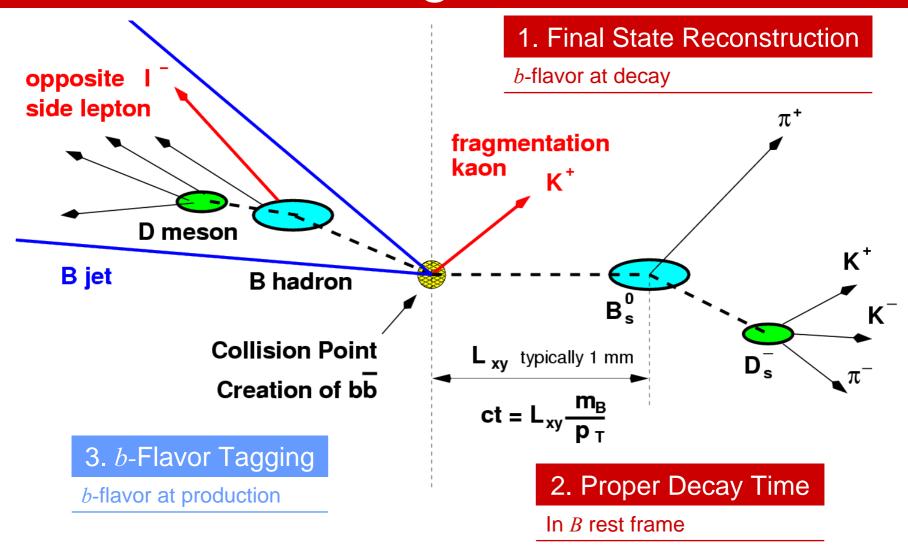
 $S \equiv$ signal candidates

 $B \equiv$ background candidates

$$\sigma_{ct} \equiv \text{time resolution}$$

significance
$$\propto \sqrt{\frac{S}{S+B}} \sqrt{\frac{\varepsilon D^2}{2}} e^{-\frac{1}{2}\sigma_{ct}^2 \Delta m_s^2}$$

$$\varepsilon \equiv \frac{correct \ tags + incorrect \ tags}{N}$$

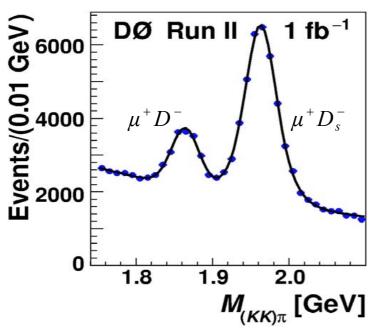

$$\varepsilon \equiv \frac{correct \ tags + incorrect \ tags}{N} \qquad \mathcal{D} \equiv \frac{correct \ tags - incorrect \ tags}{correct \ tags + incorrect \ tags}$$

- The dilution \mathcal{D} measures the purity, $\mathcal{D} = 0$ (1) \Rightarrow random (perfect) tagger
- The dilution attenuates the observed oscillations

$$P(t)_{B^0 \to B^0, \overline{B}^0} \cong \frac{1}{2\tau} e^{-\frac{t}{\tau}} [1 \pm \mathcal{O}\cos(\Delta mt)]$$

April 9, 2006 15

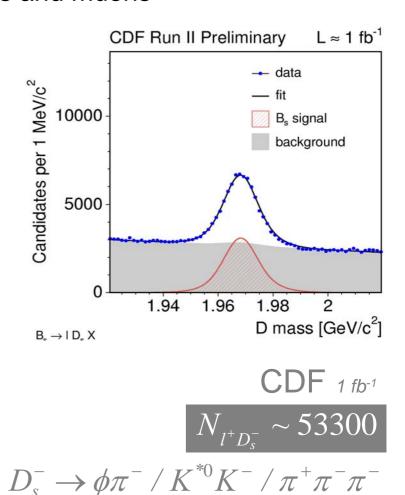
B Mixing Ingredients



4. Amplitude Scan for B_s Mixing

Set a lower limit or observe Δm_s

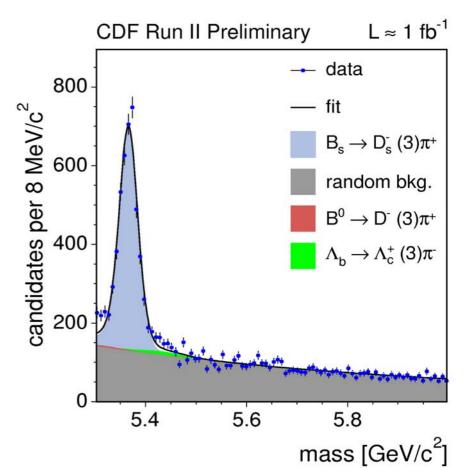
B Mixing Reconstructed $B_s \to l^+ D_s^- X$


- \blacksquare DØ exploits semileptonic decays from μ trigger
- CDF uses both electrons and muons

DØ 1 fb-1

$$N_{\mu^+ D_s^-} = 26710 \pm 556 \, (stat)$$

$$D_s^- \rightarrow \phi \pi^-, \phi \rightarrow K^+ K^-$$

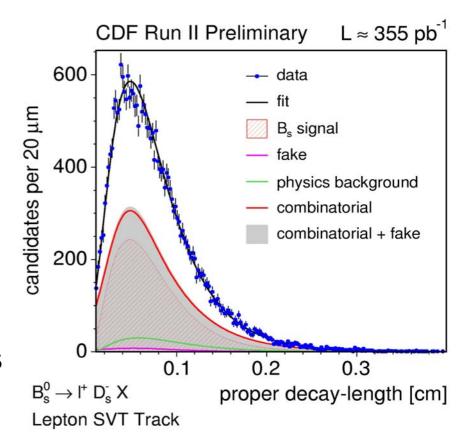

B Mixing Reconstructed $D_{\scriptscriptstyle S}^-(\pi^+\pi^-)\pi^+$

- CDF collects hadronic B decays by triggering on impact parameter
- Around 3700 B_s signal candidates

$$B_s o D_s^-ig(\pi^+\pi^-ig)\pi^+$$
 , $D_s^- o \phi\pi^-$

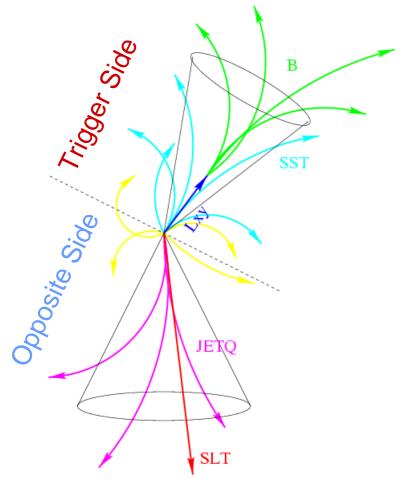
$$B_s \to D_s^- (\pi^+ \pi^-) \pi^+, D_s^- \to K^{*0} K^-$$

$$B_s o D_s^- ig(\pi^+\pi^-ig)\pi^+$$
 , $D_s^- o \pi^+\pi^-\pi^-$



April 9, 2006 J. Piedra 18

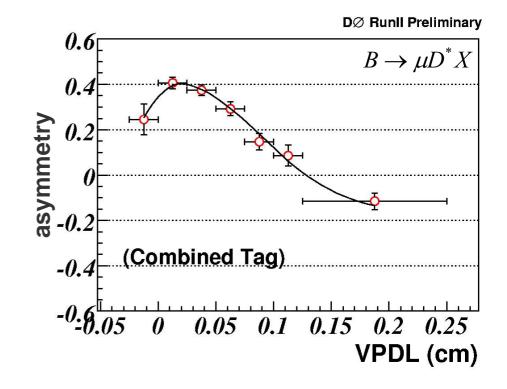
B Mixing Proper Decay Time


Procedure

- measure p_T of B daughter tracks
- ightharpoonup measure the decay length L_{xy}
- boost B back to its rest frame
- Fully reconstructed decays
 - all daughters reconstructed
- Partially reconstructed decays
 - some tracks escape detection
 - ⇒ need simulation

B Mixing b-Flavor Tagging

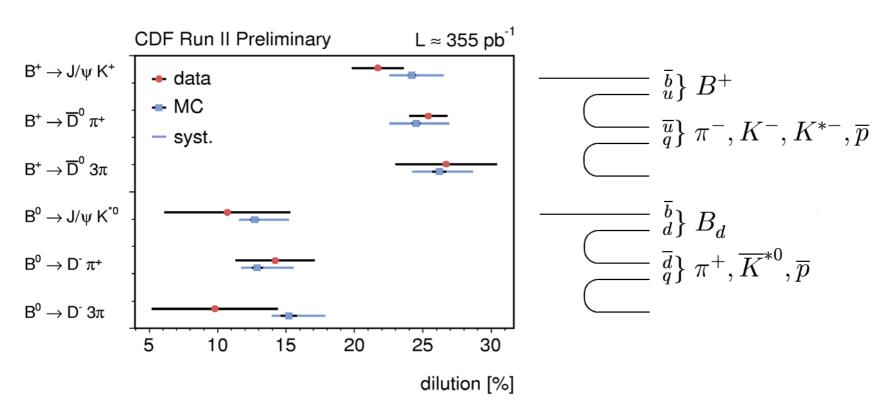
- A flavor tagger determines the *b*-flavor at production time
- \blacksquare $b\overline{b}$ production \Rightarrow flavor tagging on the Trigger Side or the Opposite Side


- Soft Lepton Tagger SLT
 - ▶ look for $B \rightarrow lvDX$ decay on the OS
 - ▶ lepton charge indicates *b*-flavor
- Jet Charge Tagger JQT
 - look for jet or secondary vertex from OS
 - ▶ jet charge indicates *b*-flavor
- Same Side (Kaon) Tagger ss(κ)τ
 - look for a fragmentation track on the TS
 - ▶ it is charge correlated with the *b*-flavor

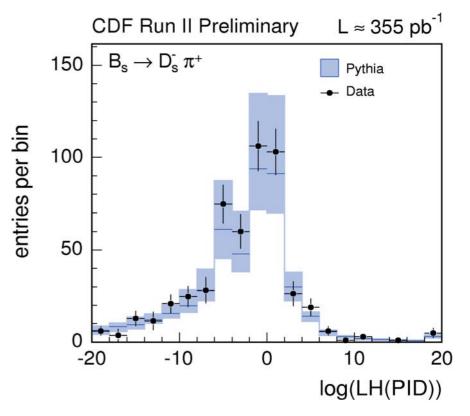
J. Piedra 20

B Mixing Flavor Analysis on B^+ and B^0

- Calibrate opposite side flavor taggers prior to Δm_s analysis
 - ightharpoonup combine several $B^{+,0}$ decays
 - combine all taggers
- Direct Δm_d measurement
 - ightharpoonup cross-check for B_s mixing

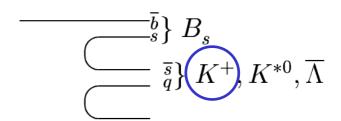

combined \mathcal{ED}^2 (%) $D\emptyset \qquad \text{CDF}$ 2.48 ± 0.22 | 1.55 ± 0.08


```
DØ semileptonic 1 fb<sup>-1</sup> \Delta m_d = 0.506 \pm 0.020 (stat) \pm 0.016 (syst) ps<sup>-1</sup> CDF semileptonic 1 fb<sup>-1</sup> \Delta m_d = 0.509 \pm 0.010 (stat) \pm 0.016 (syst) ps<sup>-1</sup> CDF hadronic 355 pb<sup>-1</sup> \Delta m_d = 0.536 \pm 0.028 (stat) \pm 0.006 (syst) ps<sup>-1</sup> world average \Delta m_d = 0.508 \pm 0.004 ps<sup>-1</sup>
```

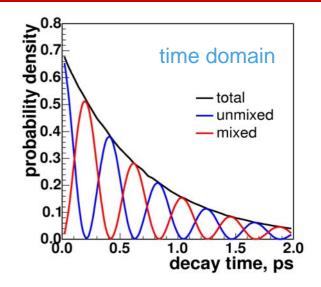

B Mixing SSKT at CDF

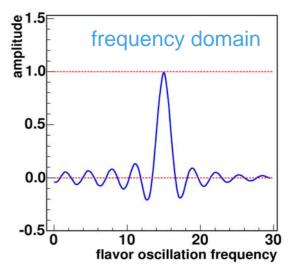
- Look for the fragmentation track that is charge correlated with the B
- $Arr \Delta m_s$ not yet measured precisely
- ⇒ Parameterization from MC
- Extensive data/MC comparisons on all tagging related quantities
- \Rightarrow Rely on MC prediction of SSKT performance for B_s mixing

B Mixing SSKT at CDF

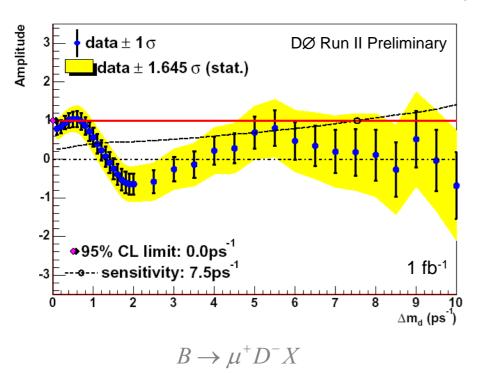

- Systematic studies cover
 - quark fragmentation model
 - $ightharpoonup b\overline{b}$ production mechanisms
 - excited B mesons content
 - detector / PID resolution
 - particle species content around B
 - data / MC agreement

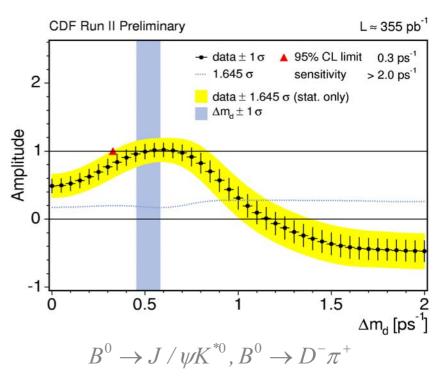
- Select track within $\Delta R < 0.7$ around B most likely to be a kaon
 - **based** on dE/dx and TOF information


CDF MC 355 pb⁻¹


$$\mathcal{E}\mathcal{D}_{SSKT}^{2}(B_{s}^{0} \to D_{s}^{-}\pi^{+}) = 4.0_{-1.2}^{+0.8} \%$$

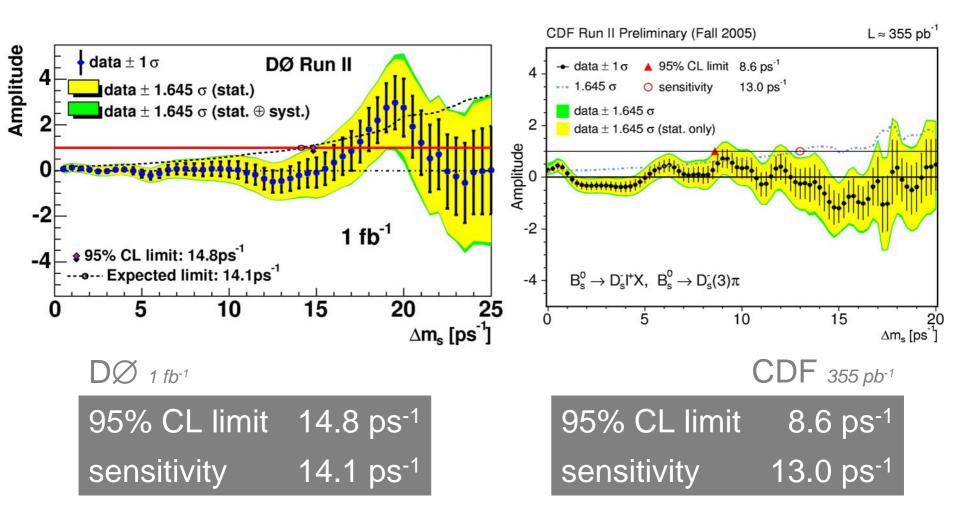
B Mixing Fourier Analysis


- Two domains to fit for oscillations
 - ▶ time → fit for a cosine wave
 - ▶ frequency → examine f-spectrum
- Time domain approach
 - ▶ fit for Δm_s in $P(t) \sim 1 \pm \mathcal{D}\cos(\Delta m_s t)$
- Frequency domain approach
 - ▶ introduce amplitude, $P(t) \sim 1 \pm \mathcal{A}\mathcal{D}\cos(\Delta m_s t)$
 - ▶ fit for \mathcal{A} at different Δm_s
 - \Rightarrow obtain frequency spectrum $\mathcal{A}(\Delta m_s)$
 - standard method for combining limits
 - ▶ with flavor taggers calibrated $\mathcal{A} = 1$ for the true Δm_s else $\mathcal{A} = 0$



B Mixing Amplitude Scans on Δm_d

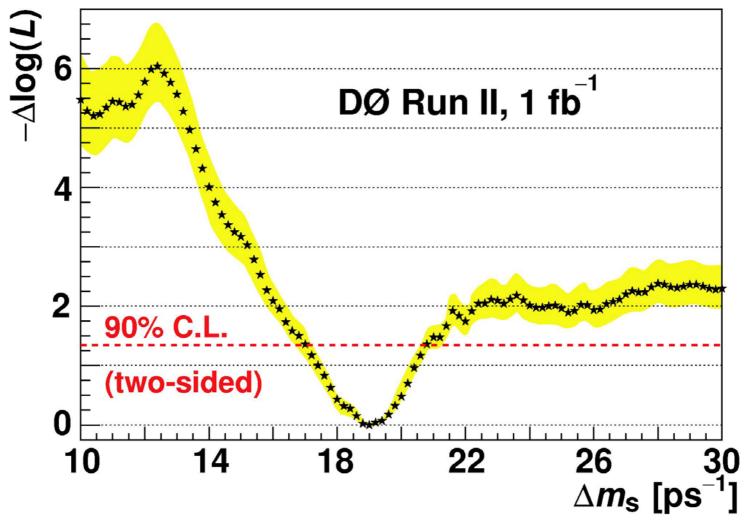
- The yellow band is $\pm 1.645\sigma_A$ around data points
- \blacksquare Δm values where $\mathcal{A}+1.645\sigma_{\mathcal{A}}<1$ are excluded at 95% CL
- Sensitivity is where $1.645\sigma_{A} = 1$


Amplitude scan works on B⁰ decay modes

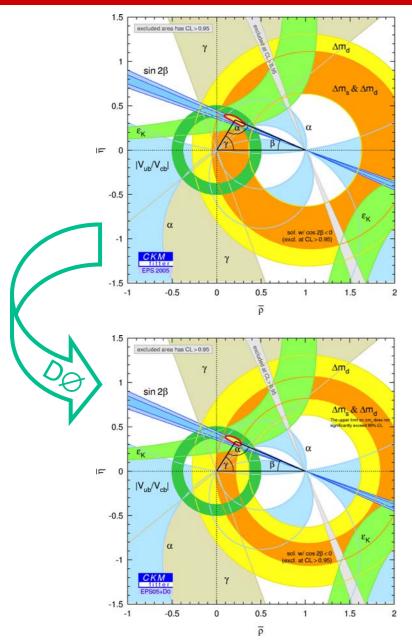
April 9, 2006 25

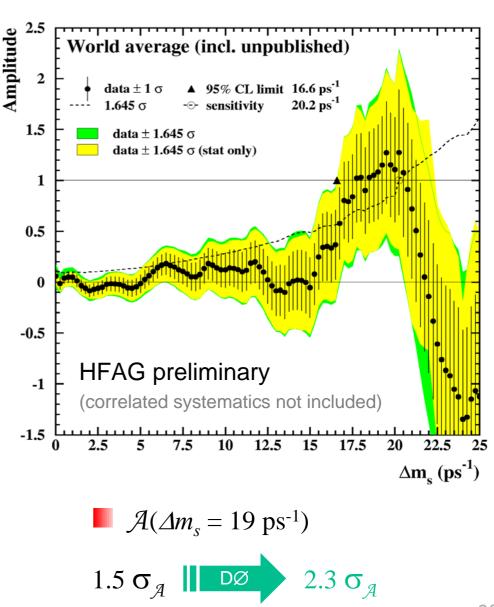
B Mixing Amplitude Scans on Δm_s

$$\mathcal{A}/\sigma_{\mathcal{A}}(\Delta m_s = 19 \text{ ps}^{-1}) = 2.5 \Rightarrow 5\% \text{ } p\text{-value}$$


SSKT not yet included

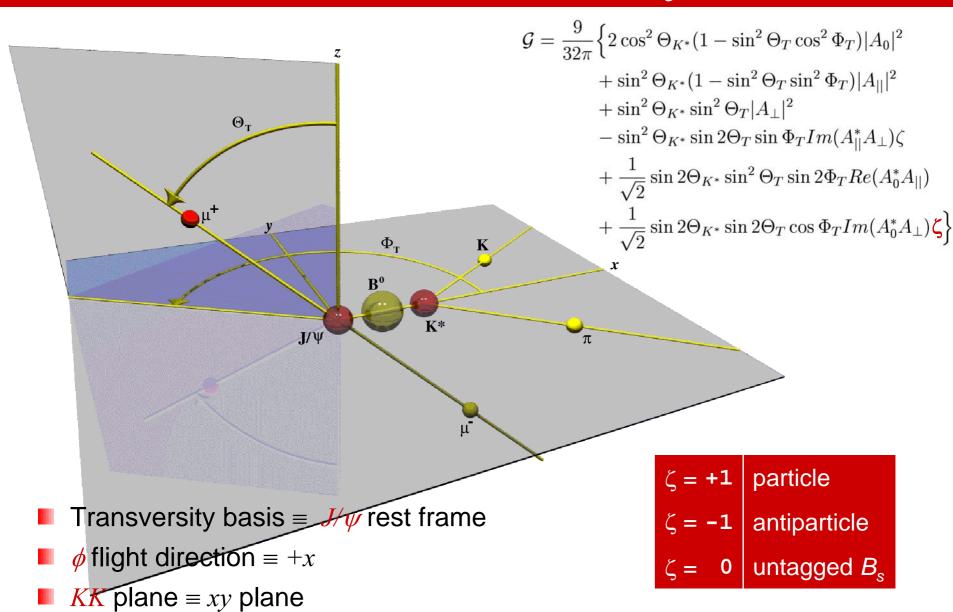
April 9, 2006 J. Piedra 26


B Mixing Log Likelihood Scan


hep-ex/0603029 submitted to Phys. Rev. Lett.

■ $17 < \Delta m_s < 21 \text{ ps}^{-1}$ @ 90% CL assuming Gaussian uncertainties

B Mixing DØ Effect on World Average

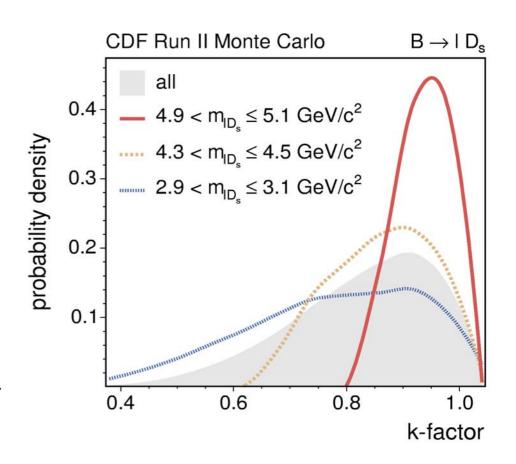


Summary

- New Λ_b lifetimes reduce distance with theory
- \blacksquare Tevatron measures the best B_s lifetimes in the world
- \blacksquare B_s lifetime difference within SM
- \square DØ B_s oscillation
 - ▶ 1 fb⁻¹
 - ▶ 2.5 σ_A excess at $\Delta m_s = 19 \text{ ps}^{-1}$ (5% p-value)
 - ► $17.1 < \Delta m_s < 21.1 \text{ ps}^{-1}$ @ 90% CL
- \blacksquare CDF B_s oscillation
 - ▶ 355 pb⁻¹
 - $\blacktriangleright \Delta m_s > 8.6 \text{ ps}^{-1} @ 95\% \text{ CL}$

Precision B Lifetimes Transversity Basis

J. Piedra


31

B Mixing Semileptonic Decay Time

- Missing particles \Rightarrow missing p_T
- Determine pseudo-ct from data

$$ct^* = L_{xy} \frac{m_B}{p_T^{ID}}$$

- $ct = ct^* k_{MC}$
 - include k_{MC} effect in signal PDF

$$P(ct^*) = \frac{k_{MC}}{2c\tau} exp\left(-\frac{ct^*k_{MC}}{c\tau}\right) \theta(ct^*) \otimes Gauss \otimes F(k_{MC}) \xi(ct^*)$$